
iPFlakies: A Framework for Detecting and Fixing Python
Order-Dependent Flaky Tests

Ruixin Wang
ruixinwang@zju.edu.cn
Zhejiang University

China

Yang Chen
yangchen20@hust.edu.cn

Huazhong University of Science and
Technology

China

Wing Lam
winglam@gmu.edu

George Mason University
USA

ABSTRACT
Developers typically run tests after code changes. Flaky tests, which
are tests that can nondeterministically pass and fail when run on
the same version of code, can mislead developers about their recent
changes. Much of the prior work on flaky tests is focused on Java
projects. One prominent category of flaky tests that the prior work
focused on is order-dependent (OD) tests, which are tests that pass
or fail depending on the order in which tests are run. For example,
our prior work proposed using other tests in the test suite to fix (or
correctly set up) the state needed by Java OD tests to pass.

Unlike Java flaky tests, flaky tests in other programming lan-
guages have received less attention. To help with this problem,
another piece of prior work recently studied flaky tests in Python
projects and detected many OD tests. Unfortunately, the work did
not identify the other tests in the test suites that can be used to
fix the OD tests. To fill this gap, we propose iPFlakies, a frame-
work for automatically detecting and fixing Python OD tests. Using
iPFlakies, we extend the prior work’s dataset to include (1) tests that
can be used to reproduce and fix the OD tests and (2) patches for
the OD tests. Our work to extend the dataset finds that reproducing
passing and failing test results of flaky tests can be difficult and
that iPFlakies is effective at detecting and fixing Python OD tests.
To aid future research, we make our iPFlakies framework, dataset
improvements, and experimental infrastructure publicly available.

KEYWORDS
flaky tests, order-dependent test, Python, automated repair
ACM Reference Format:
Ruixin Wang, Yang Chen, and Wing Lam. 2022. iPFlakies: A Framework for
Detecting and Fixing Python Order-Dependent Flaky Tests. In 44th Interna-
tional Conference on Software Engineering Companion (ICSE ’22 Companion),
May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3510454.3516846

1 INTRODUCTION
To detect whether recent code changes introduce any bugs, devel-
opers typically perform regression testing after code changes. If all

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9223-5/22/05. . . $15.00
https://doi.org/10.1145/3510454.3516846

the tests pass, developers can safely merge their changes. However,
if some tests fail, developers typically debug their changes to fix
the failures. Unfortunately, flaky tests [12], which are tests that
nondeterministically pass and fail when run on the same version
of code, mislead developers about their changes, waste developers’
time debugging failures in their changes, and reduce developers’
trust in testing. In fact, many companies have published blogs (e.g.,
Fitbit [11], Gradle [17]) and research papers (e.g., Apple [5], Face-
book [3], Google [13], Microsoft [6]) on flaky tests.

Much research has been done using Java projects in recent years
to help with flaky tests. For example, Luo et al. [12] proposed the
first taxonomy of flaky tests in Java projects. One prominent cate-
gory of flaky tests identified in this taxonomy are order-dependent
(OD) flaky tests, which are tests whose outcomes depend on the
order in which tests are run. Since the taxonomy, much of the
flaky-test work has focused on OD tests [1, 2, 7–9, 12, 15, 19].

To helpwithODflaky tests, our priorwork proposed iDFlakies [7],
a framework for detecting and partially categorizing Java OD tests,
and iFixFlakies [15], a framework for automatically fixing Java OD
tests. On a high level, the two frameworks run tests in various
orders to detect, categorize, and generate patches for OD tests. To
detect OD tests, the frameworks run tests in random orders. To
categorize OD tests for debugging and fixing, the frameworks run
tests in certain orders to determine whether an OD test is a victim
(a test that fails when run after another test, called a polluter, but
passes when run before the polluter) or a brittle (a test that passes
only when it is run after another test, called a state-setter, but fails
when run before the state-setter).

In this paper, we focus our discussion of OD tests on victims
as our prior work [15] found that 91% of OD tests are victims.
Essentially, a victim fails because the victim reads some shared state
that the polluter modifies. To generate patches, the frameworks first
find the polluters and cleaners (tests that clean the polluted state
shared by a victim and a polluter such that running the polluter,
then cleaner, and finally the victim will result in the victim passing)
for each victim. To find cleaners, our prior work [15] searches for
such tests in the passing test suite runs of the victim. More recently,
additional work has been proposed to generate cleaners [10]. An
example of a victim, polluter, and cleaner is in Section 2. Once
cleaners are identified, the frameworks then search the code within
cleaners to propose a patch for the victim. To be brief, we refer to
the tests (polluter, cleaner, state-setter) that are related to OD tests
as OD-related tests.

Although Java flaky tests have received much attention (e.g.,
frameworks [1, 7, 15] that automatically detect, categorize, and
patch), flaky tests in other programming languages, such as Python,

https://doi.org/10.1145/3510454.3516846
https://doi.org/10.1145/3510454.3516846

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Wang et al.

have received less attention. To help with this problem, Gruber et
al. [1] recently studied flaky tests in Python projects. Their work
studied flaky tests in 22,352 Python projects using a total of 400
runs for each project’s test suite, and they found OD tests to be the
most common category of flaky tests, accounting for 59% of all flaky
tests detected. Despite providing an invaluable dataset of Python
OD tests, the dataset does not contain OD-related test information,
which are useful to generate patches for the OD tests.

In this paper, we aim to fill this gap by proposing iPFlakies, a
framework for automatically detecting and fixing Python OD tests
and the use of the framework to find OD-related tests to generate
patches for Python OD tests. On a high level, iPFlakies encapsulates
the functionalities of iDFlakies and iFixFlakies but for Python tests.
iPFlakies is also much easier to setup – instead of requiring several
commands to setup two frameworks, iPFlakies is one framework
that requires just one command (pip install ipflakies).

Using iPFlakies on Gruber et al.’s dataset [1], we identify two
main findings: (1) reproducing passing and failing test results of
flaky tests is difficult, and (2) iPFlakies is effective at detecting and
fixing Python OD tests. When we run the test suites that Gruber et
al. detected at least one OD test, we find that only 64% of the test
suites can be run without errors (e.g., missing dependencies), even
though we follow a similar experimental methodology as Gruber
et al. To help future research, we run all test suites using Docker
and share our experimental infrastructure [4]. For the test suites
that we can run, we observe a passing and failing run for 57% of
the OD tests detected in prior work when we run the test suites
in 100 random orders and when we run every test before each of
the OD test. We also find 30 OD tests that were not detected in
prior work. Lastly, we find that 63% of OD tests contain cleaners or
state-setters, and iPFlakies can automatically fix 33% of such tests.

Overall, this paper makes the following main contributions:
iPFlakies Framework: A publicly available [4] framework that
unifies the automatic detection and fixing of Python OD tests.
Dataset: The first dataset of OD-related tests (e.g., for victims, we
identify polluters and cleaners) and patches for Python OD tests.
Our dataset also includes the Docker images used to detect the
OD-related tests and generate patches [4].
Study: We perform a study on Python OD tests from Gruber et
al.’s dataset. We find that reproducing both passing and failing test
results of flaky tests is difficult and that iPFlakies is effective at
detecting and fixing Python OD tests.

2 BACKGROUND
OD flaky tests pass and fail due to the order in which the tests

are run. They consistently pass in one order and consistently fail in
another order, and they are categorized as either brittles or victims.

A brittle is an OD test that consistently fails when run in isolation.
There must also be a certain test order containing another test,
referred to as state-setter, such that running the state-setter before
the brittle results in the brittle passing. A state-setter can be one or
more test. However, our prior work [15] reported that it is rare for
an OD test to require multiple tests to pass or fail.

A victim is an OD test that consistently passes when run in
isolation but can fail if polluters run before the victim. If a cleaner
is run in between polluter and victim, then the victim passes. A

1 def test_register_multiple (): # victim (V)
2 con.register_many(Ex, [Ex1 , Ex2])
3 inst = con.get(List[Ex])
4 ... # check some properties of inst
5 assert type(inst [0]) is Ex1
6 assert type(inst [1]) is Ex2
7 def test_multiple_list_ ... _wrap(): # polluter (P)
8 con._clear_all ()
9 con.register_many(Ex, [Ex2 , Ex3])
10 con.register_many(Ex1 , [Ex3 , Ex4])
11 inst = con.get(MainWrapper)
12 ... # check some properties of inst
13 def test_class_mapping (): # cleaner (C)
14 con.initialize ()
15 con.register_class(Ex, Ex2)
16 inst = con.get(Ex)
17 assert type(inst) is Ex2

Figure 1: Example victim, polluter, and cleaner from omer-

saraf/IOCynergy on GitHub.

victim can pass when a cleaner is run in between a polluter and
the victim, because cleaners clean the state polluted by a polluter.
Similar to state-setters, each polluter and cleaner can be one or
more test, but our prior work [15] has found that these categories
of tests are rarely multiple tests. This prior work also found that
91% of OD tests are victims. Therefore, we focus our discussion of
OD tests on victims. We next show an example of a victim OD test.

2.1 Victim OD Test Example
Figure 1 shows an example of a victim, polluter, and cleaner. The
victim is test_register_multiple() (or V for short), the polluter is
test_multiple_list_..._wrap() (or P for short), and the cleaner is
test_class_mapping() (or C for short). The victim is from Gruber et
al.’s dataset [1] and the polluter and cleaner are found by iPFlakies.
All three tests change or read the con variable shared among the
tests. Specifically, in P, Line 9 sets a list containing Ex2 and Ex3 for
key Ex in con. Therefore, when V is run after P, the con variable
would already contain the key Ex when V starts to run. This shared
state is problematic because at Line 2 of V, Ex already exists in
the map, and it cannot be mapped to a list containing Ex1 and Ex2,
which lines 5 and 6 are checking for. If C is run in between P and
V, then Line 14 initializes the con variable and removes the Ex key
along with its mapped value. Therefore, even if V is run after P, as
long as Line 14 of C is run before V, then Vwill pass. When we apply
iPFlakies to V, iPFlakies is able to find the polluter and cleaner for
this victim and generate a patch (Line 14) in just 12.5 seconds.

3 IPFLAKIES
iPFlakies encapsulates the functionalities of iDFlakies and iFixFlakies.
Figure 2 shows an overview of iPFlakies. We refer to the iDFlakies
and iFixFlakies that are parts of iPFlakies with iDFlakiesp and
iFixFlakiesp, respectively, whilewe refer to the original iDFlakies [7]
and iFixFlakies [15] from our prior work using their original names.

3.1 iDFlakiesp
On a high level, iDFlakiesp detects and categorizes Python OD tests
using two main components: Randomizer and Analyzer.
Detecting flaky tests. The goal of Randomizer is to run a test
suite multiple times in random orders. To accomplish this goal,

iPFlakies: A Framework for Detecting and Fixing Python Order-Dependent Flaky Tests ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

Figure 2: Overview of iPFlakies.

Randomizer accepts two main parameters: –seed for generating
deterministic random orders and –num_iterations for controlling
the number of random orders to run. To run tests, Randomizer
relies on the –random-order-seed parameter from PyTest. PyTest
uses this parameter to run tests in one random order. By default,
PyTest cannot run a test suite in a random order multiple times.
Therefore, to run test suites multiple times, Randomizer first uses a
seed to generate other seeds (i.e., one seed for each random order
to run) and then invoke PyTest multiple times with the generated
seeds. The output of Randomizer is the execution result of tests
from all of the random orders that were run.
Categorizing flaky tests. The goal of Analyzer is to analyze the
execution results of tests from different runs to identify and cate-
gorize flaky tests. To accomplish this goal, Analyzer reruns passing
and failing orders for each test that contains at least one passing
and at least one failing order. On a high level, Analyzer accepts the
output of Randomizer and two main parameters: –num_orders for
controlling the number of passing and failing orders to rerun and
–num_rerun for controlling the number of reruns for each order. If a
flaky test does not consistently pass in its passing orders and does
not consistently fail in its failing orders, then the test is categorized
as nondeterministic (NO). If a test is not NO, then Analyzer runs the
test in isolation. If the test consistently passes in isolation, then it
is a victim. If the test consistently fails, then it is a brittle. Lastly,
if the test inconsistently passes and fails, then the test is actually
NO. The output of Analyzer is a set of categorized flaky tests along
with passing and failing orders for each OD test. Compared to the
original iDFlakies, iDFlakiesp is meant for Python instead of Java
tests and iDFlakiesp runs detected OD tests in isolation to further
categorize the tests as victims or brittles.

3.2 iFixFlakiesp
On a high level, iFixFlakiesp detects OD-related tests (e.g., polluters
and cleaners for victims) and generates patches using two main
components: Minimizer and Patcher.
Finding OD-related tests. The goal of Minimizer is to identify
all OD-related tests for a given OD test. To identify OD-related
tests, Minimizer takes an OD test and its passing and failing test
orders as input, and then runs the tests through various algorithms.
The parameter –minimizer_mode enables one to choose from two
algorithms for detecting polluters and state-setters: (1) run each test
in the test suite before the OD test or (2) use delta debugging [18]
to minimize the failing and passing orders to find polluters and

state-setters, respectively. Once polluters are identified for victims,
the Minimizer then uses the algorithms again to find cleaners (e.g.,
run every test in between polluter and victim).
Generating patches. The goal of Patcher is to generate patches
for OD tests using helpers (cleaners for victims and state-setters for
brittles) from the output of Minimizer. When generating patches
for an OD test, Patcher first copies all Import statements of a helper
to the Python file containing the OD test. Next, Patcher copies the
method bodies of the setup and teardown functions of the helper
along with the method body of the helper itself directly into the
beginning of the OD test. Patcher then checks whether the added
code can make the OD test pass (e.g., victim passes when it is run
after the polluter). If so, Patcher will further delta debug the added
code to get theminimal patch. Note that for victims, iFixFlakiesp can
be configured to insert the patches at the beginning of the victims
or at the end of the polluters. The parameter patch_mode allows the
user to decide whether to get all possible patches, or simply the first
patch that is able to fix the victim for all of its polluters. Compared
to the original iFixFlakies, iFixFlakiesp is meant for Python tests
instead of Java tests and these additional parameters (e.g., first patch
that fixes all polluters for a victim) are new. In the future, we plan
to continue improving both the Java and Python variants.

4 EVALUATION
To evaluate iPFlakies, we consider the following RQs:
RQ1: How effective is iPFlakies at detecting OD tests?
RQ2: How effective is iPFlakies at generating patches for OD tests?

Before we describe the results of the RQs, we first describe the
projects and the methodology we use for our evaluation.

4.1 Evaluation Projects
For our evaluation of iPFlakies, we use the same projects and com-
mits used in a prior study of Python OD tests [1]. We use the same
project commits because the prior work detected flaky tests and cat-
egorized them as OD or NO in the specific project commits, thereby
allowing us to compare flaky tests that we detect to previously
detected tests (Section 4.3.1).

To setup the test suites in Gruber et al.’s dataset [1], we obtain
the same 610 projects and the same version of the projects in which
Gruber et al. detected at least one OD test. Similar to Gruber et
al.’s work, we then search for files that developers are likely to
keep dependency requirements of their projects in. Specifically,

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Wang et al.

we search for Pipfile and *requirements*.txt files to install the
dependencies of each project.

Once we identify the requirements-related files, we run pip in-

stall -r with the files to setup the dependencies of the projects.
Regardless of whether requirements-related files are found, we
then proceed to run the project’s test suite by running pytest. If
no tests are run from the pytest command, then we consider the
test suite to be incorrectly setup. Conversely, if at least one test
is run, we consider the test suite to be correctly setup. All of our
experiments are run inside a Python 3.8.12 Docker image, which
we make publicly available [4]. Our Docker image is first obtained
from running docker pull python:3.8.12 and then improved to
contain the necessary dependencies required by our experimental
scripts and iPFlakies.

The OD tests in Gruber et al.’s dataset are from 610 projects.
Following our described project setup, we correctly run 64% (392) of
the projects. The other 36% (218) of projects we could not correctly
run due to missing dependencies or the projects require specific
Python versions that differs from the one we used (3.8.12). To help
with some of these issues, we plan to try approaches that fix Python
builds caused by dependency errors [14] in the future.

Of the 392 projects we are able to run, 26 projects timed out
following our experimental methodology described in Section 4.2
and one project’s tests deleted files on the filesystem. We remove
these 27 projects from our evaluation and list why they are removed
on our website [4]. In the end, we are able to run 1978 OD tests in
365 projects from Gruber et al.’s dataset. To aid future research, we
include the code and dependencies of the 365 projects as part of
our dataset [4].

4.2 Methodology
4.2.1 RQ1. In this RQ, we study howmany tests that were detected
to be OD in Gruber et al.’s dataset can be detected as flaky (OD or
NO) with iPFlakies and how many flaky tests iPFlakies can detect
that were not detected by Gruber et al. To avoid confusion, we
refer to the OD tests detected by Gruber et al. as potentially-OD
(potent-OD for short) tests and the ones we detect as OD tests. To
evaluate this RQ, we perform the following steps.
Step 1: Run each test suite in 100 random orders and catego-
rize flaky tests. We first run each test suite in 100 random orders.
Using the results of the 100 runs, we then categorize detected flaky
tests as NO or as likely OD. A test is categorized as NO if the test
nondeterministically passes and fails in any given prefix of tests (i.e.,
tests running before the NO test). A test is categorized as likely OD
if the test passes and fails in 100 runs but the test deterministically
passes or fails in any given prefix of tests.

To verify whether each likely OD test is OD, we rerun up to
three passing and up to three failing orders for each test. Each order
is rerun three times. If a likely OD test has a test order in which
it nondeterministically passes and fails, it is categorized as NO.
Otherwise, the test is categorized as OD.

In summary, each OD test detected in our work is run 100 times
in random test suite orders plus at least six and at most 18 times to
verify the test. The main difference between our methodology to
detect OD tests and the methodology from prior work [1] is that
our methodology includes a step to verify the detected OD tests.

Details for how this difference affects the OD tests that we detect
are presented in Section 4.3.1.
Step 2: Run each potent-OD test detected by Gruber et al. and
OD test from Step 1 in isolation 10 times. For each time, we run
one test in its own Python interpreter. If any test passes and fails
in the 10 runs, then the test is categorized as NO. This step also
categorizes OD tests as either victims (always passed in isolation)
or brittles (always failed in isolation).
Step 3: Run each test in the test suite before each potent-
OD test and before each OD test from Step 2. Running each
test before potent-OD tests has been shown to be effective for
confirming OD tests in prior work [9, 15] and helps find OD-related
tests (polluters for victims and state-setters for brittles).

To limit the cost of our experiments, we set each test run (i.e., a
test suite or just a pair of tests) to time out after 864 seconds (i.e.,
Step 2 takes at most 24 hours for 100 runs).

4.2.2 RQ2. In this RQ, we study the effectiveness of iPFlakies to
generate patches for the OD tests we detect. To generate patches,
iPFlakies relies on state-setters for brittles and cleaners for victims.
Therefore, for all of the OD tests that we detect, we attempt to
find all of the state-setters and cleaners. We obtain the state-setters
for brittles from running each test in the test suite before the brit-
tle (Step 3 from Section 4.2.1). For cleaners, we follow a similar
methodology to Step 3 – for every polluter and victim pair, we
run every test in between the polluter and victim. If for any given
test, the victim passes, then we rerun the three tests three times to
verify that the victim passes in all three runs. Using the state-setters
and cleaners, we use iPFlakies to generate one patch that can help
brittles pass in isolation and victims pass when they are run after
any of their polluters. We find only four victims where we could
generate a patch for some polluters but not for all of its polluters.

4.3 Results
4.3.1 RQ1. Of the 1978 potent-OD tests that we can run, we find
that 803 are victims, 318 are brittles, 225 are NO, and 632 are not
flaky (453 always passed and 179 always failed). Overall, our results
suggest that at least 11% of potent-OD tests are actually NO and
that up to 32% of the potent-OD tests may not be flaky. The high per-
centage of NO tests is likely because of methodological differences
that we and Gruber et al. used to categorize tests. Namely, Gruber
et al. ran test suites in (1) one order 200 times and (2) 200 random
orders (running each order just once). Tests whose execution result
changed in (1) are categorized as NO, while tests that changed in
(2) are categorized as OD. In contrast to Gruber et al., we do not
assume that all changes from random orders imply that an OD
test is detected (such changes can still be due to NO tests). In fact,
our prior work [8] found that many NO tests are nondeterministic,
order-dependent tests, which are tests that have statistically signif-
icantly different failure rates in different test orders. Finer-grained
categorization of NO tests continues to be an important future re-
search topic. Lastly, the high percentage of tests that may not be
flaky is likely because we run fewer random orders than Gruber et
al. and because of differences in our experimental infrastructure.

Our experiments with iPFlakies also detect 30 OD tests not de-
tected in Gruber et al.’s dataset. Specifically, our experiments detect
23 victims and 7 brittles that were not detected in Gruber et al.’s

iPFlakies: A Framework for Detecting and Fixing Python Order-Dependent Flaky Tests ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

Figure 3: Number of NO and OD tests detected by iPFlakies
and their overlap with tests detected by Gruber et al. [1].

dataset. Figure 3 shows a detailed breakdown of how the flaky
tests detected by iPFlakies overlap or not with the potent-OD tests
detected by Gruber et al. Our prior work [15] found that only 3%
of Java OD tests required more than one test to exhibit flakiness
(i.e., brittles needing more than one test as a state-setter or victims
needing more than one test as a polluter). Compared to our prior
work [15], we find that 26% of OD tests (31% for victims and 12%
for brittles) require more than one test to exhibit flakiness.
A1: Using iPFlakies on the same set of project commits as prior
work [1], we detect 57% of the OD tests detected in prior work and
detect an additional 30 OD tests not detected in prior work.

4.3.2 RQ2. Of the 1151 OD tests (1121 tests from Gruber et al.
and iPFlakies + 30 tests from iPFlakies), we find cleaners and state-
setters (referred to as helpers [15]) for 537 tests (251 victims + 286
brittles). Note that some brittles may not have state-setters because
their state-setters are composed of more than one test. We detect
these brittles in steps 1 and 2 described in Section 4.2.1 but are
unable to find their state-setters in Step 3. Of the 537 tests, iPFlakies
can generate at least one patch for 33% (175) of tests. For all tests,
except for four tests, the generated patch can help victims pass for
all of their polluters and for brittles to pass in isolation.

For the projects that contain at least one test that iPFlakies could
not fix, we inspect at least one test from each of these projects.
We find that iPFlakies failed to fix some tests because (1) the OD
test or OD-related tests require specific parameters (e.g., a cleaner
only cleans when run with a specific parameter) or (2) some global
variables or methods are needed by the helper but are missing
when we copy the helper code into the OD test, which often led to
runtime errors. In the future, we plan to improve iPFlakies to deal
with these issues and to consider other ways to find helpers [10].
A2: Using iPFlakies on 537 OD tests, we find that iPFlakies can
generate patches for 33% of the OD tests with the overwhelming
majority of the patches enabling victims to run after any polluter.

5 THREATS OF VALIDITY
One threat to validity is that we use projects from Gruber et al.’s
dataset [1]. The projects in this dataset may not be representative
of all Python projects. We also could not setup and run all projects
in the dataset due to missing dependencies for some projects and a
small number of projects timed out. Our methodology to resolve
dependency issues includes broadly searching for two different
commonly used files to specify dependencies for Python projects.
However, such efforts may nonetheless be inadequate for some
projects. Nevertheless, we attempt to mitigate this threat by still
using a substantial number of projects in our evaluation of iPFlakies.

As this work is on flaky tests, it is likely that test results can
be different if they are run in different environments or run more
times. Tomitigate this threat, we run our experiments inside Docker
containers and make available as much of our dataset and infras-
tructure [4] as possible. We also run each test suite in our evaluation
projects in 100 random orders. For OD tests, the lowest failure rate
reported in prior work [16] is 4.5%. With 100 random orders, the
likelihood of not observing a failure for such a test is merely 1%.

6 CONCLUSION
In this paper, we proposed iPFlakies, a framework for detecting and
fixing Python OD tests. Using iPFlakies, we extended an existing
dataset of Python OD tests to include (1) OD-related tests that can
be used to reproduce and fix OD tests and (2) patches for the OD
tests. To aid future research, we make our iPFlakies framework,
dataset improvements, and experimental infrastructure publicly
available [4]. In the future, we plan to submit the generated patches
to developers and improve iPFlakies to work on more projects (e.g.,
support more testing frameworks).

ACKNOWLEDGMENTS
We thank Marcelo d’Amorim, Darko Marinov, August Shi, Anjiang
Wei, and Pu Yi for their feedback on this work.

REFERENCES
[1] Martin Gruber, Stephan Lukasczyk, Florian Kroiß, and Gordon Fraser. 2021. An

empirical study of flaky tests in Python. In ICST.
[2] Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. 2015. Reliable testing:

Detecting state-polluting tests to prevent test dependency. In ISSTA.
[3] Mark Harman and Peter O’Hearn. 2018. From start-ups to scale-ups: Opportuni-

ties and open problems for static and dynamic program analysis. In SCAM.
[4] iPFlakies website 2021. https://sites.google.com/view/ipflakies
[5] Emily Kowalczyk, Karan Nair, Zebao Gao, Leo Silberstein, Teng Long, and Atif

Memon. 2020. Modeling and ranking flaky tests at Apple. In ICSE SEIP.
[6] Wing Lam, Kivanç Muşlu, Hitesh Sajnani, and Suresh Thummalapenta. 2020. A

study on the lifecycle of flaky tests. In ICSE.
[7] Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. 2019. iDFlakies:

A framework for detecting and partially classifying flaky tests. In ICST.
[8] Wing Lam, StefanWinter, Angello Astorga, Victoria Stodden, and Darko Marinov.

2020. Understanding reproducibility and characteristics of flaky tests through
test reruns in Java projects. In ISSRE.

[9] Wing Lam, Stefan Winter, Anjiang Wei, Tao Xie, Darko Marinov, and Jonathan
Bell. 2020. A large-scale longitudinal study of flaky tests. In OOPSLA.

[10] Chengpeng Li, Chenguang Zhu, Wenxi Wang, and August Shi. 2022. Repairing
order-dependent flaky tests via test generation. In ICSE.

[11] Serban Liviu. 2019. A machine learning solution for detecting and mitigating
flaky tests. https://eng.fitbit.com/a-machine-learning-solution-for-detecting-
and-mitigating-flaky-tests

[12] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
empirical analysis of flaky tests. In FSE.

[13] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siem-
borski, and John Micco. 2017. Taming Google-scale continuous testing. In ICSE
SEIP.

[14] Suchita Mukherjee, Abigail Almanza, and Cindy Rubio-González. 2021. Fixing
dependency errors for Python build reproducibility. In ISSTA.

[15] August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. 2019. iFixFlakies:
A framework for automatically fixing order-dependent flaky tests. In ESEC/FSE.

[16] Anjiang Wei, Pu Yi, Tao Xie, Darko Marinov, and Wing Lam. 2021. Probabilistic
and systematic coverage of consecutive test-method pairs for detecting order-
dependent flaky tests. In TACAS.

[17] Eric Wendelin. 2021. Introducing flaky test mitigation tools. https://blog.gradle.
org/gradle-flaky-test-retry-plugin

[18] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and isolating failure-
inducing input. TSE (2002).

[19] Sai Zhang, Darioush Jalali, Jochen Wuttke, Kıvanç Muşlu, Wing Lam, Michael D.
Ernst, and David Notkin. 2014. Empirically revisiting the test independence
assumption. In ISSTA.

https://sites.google.com/view/ipflakies
https://eng.fitbit.com/a-machine-learning-solution-for-detecting-and-mitigating-flaky-tests
https://eng.fitbit.com/a-machine-learning-solution-for-detecting-and-mitigating-flaky-tests
https://blog.gradle.org/gradle-flaky-test-retry-plugin
https://blog.gradle.org/gradle-flaky-test-retry-plugin

	Abstract
	1 Introduction
	2 Background
	2.1 Victim OD Test Example

	3 iPFlakies
	3.1 iDFlakiesp
	3.2 iFixFlakiesp

	4 Evaluation
	4.1 Evaluation Projects
	4.2 Methodology
	4.3 Results

	5 Threats of Validity
	6 Conclusion
	Acknowledgments
	References

