
Neurosymbolic Repair of Test Flakiness

Yang Chen
University of Illinois Urbana-Champaign

Urbana, IL, USA
yangc9@illinois.edu

Reyhaneh Jabbarvand
University of Illinois Urbana-Champaign

Urbana, IL, USA
reyhaneh@illinois.edu

Abstract

Test �akiness, a non-deterministic behavior of builds irrelevant to

code changes, is a major and continuing impediment to deliver-

ing reliable software. The very few techniques for the automated

repair of test �akiness are speci�cally crafted to repair either Order-

Dependent (OD) or Implementation-Dependent (ID) �akiness. They

are also all symbolic approaches, i.e., they leverage program analy-

sis to detect and repair known test �akiness patterns and root causes,

failing to generalize. To bridge the gap, we propose FlakyDoctor,

a neuro-symbolic technique that combines the power of LLMs—

generalizability—and program analysis—soundness—to �x di�erent

types of test �akiness.

Our extensive evaluation using 873 con�rmed �aky tests (332

OD and 541 ID) from 243 real-world projects demonstrates the

ability of FlakyDoctor in repairing �akiness, achieving 57% (OD)

and 59% (ID) success rate. Comparing to three alternative �akiness

repair approaches, FlakyDoctor can repair 8% more ID tests than

DexFix, 12% more OD �aky tests than ODRepair, and 17% more

OD �aky tests than iFixFlakies. Regardless of underlying LLM, the

non-LLM components of FlakyDoctor contribute to 12–31 % of

the overall performance, i.e., while part of the FlakyDoctor power

is from using LLMs, they are not good enough to repair �aky tests

in real-world projects alone. What makes the proposed technique

superior to related research on test �akiness mitigation speci�cally

and program repair, in general, is repairing 79 previously un�xed

�aky tests in real-world projects. We opened pull requests for all

cases with corresponding patches; 19 of them were accepted and

merged at the time of submission.
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1 Introduction

Test �akiness is the problem of observing non-determinism in test

execution results without any changes in the code under tests. This

phenomenon can drastically impact the e�ectiveness of regression

testing in software products. The root cause of test �akiness is code

smells in the test suite. However, developers cannot distinguish

if the test failure is due to a bug in the code or �akiness, which

can waste the valuable time of developers [21] and computing

resources [25, 37] without resolving the underlying issue.

To minimize the negative impact of test �akiness, several tech-

niques have been proposed to characterize, detect, and repair them.

Compared to detecting �akiness, there is a dearth of work focus-

ing on their repair. All such techniques repair a speci�c type of

test �akiness. For example, iFixFlakies [44], iPFlakies [47], and

ODRepair [32] are all designed to repair Order-Dependent (OD)

�akiness, which non-deterministically pass or fail under di�erent

test execution orders. DexFix [59] proposes a set of domain-speci�c

strategies to repair Implementation-Dependent (ID) �aky tests,

which happen due to unrealistic assumptions about non-ordered

collections. TRaF [40] repairs asynchronous waits, a speci�c type of

Non-Order-Dependent (NOD) tests that non-deterministically pass

or fail due to concurrency issues or dependency on the execution

platform, memory, and time.

Regardless of the �akiness category of interest, all prior tech-

niques are symbolic, 1, i.e., they use human knowledge to devise

and implement analytical pattern-based rules for repairing test �ak-

iness. As a result, they cannot generalize to repairing �aky tests

with unknown root causes that analytical rules do not implement.

More importantly, their abilities are limited due to the potential lim-

itation of underlying program analysis techniques in generalizing

to new programming features and various development styles.

Large Language Models (LLMs) are e�ective in generative pro-

gramming tasks, making them a natural solution for overcoming

the generalizability limitations of �xing �aky tests. However, LLMs

also su�er from a series of limitations, namely, (L1) generating (syn-

tactically and semantically) incorrect code [33, 34, 38], (L2) the need

for proper context in the prompt to perform reasonably [39, 45, 54],

and (L3) limited context window, which makes leveraging them

for real-world programs and test suites challenging [34, 38, 39]. To

use LLMs for �xing �akiness in real-world problems, one can miti-

gate these challenges by augmenting LLMs with sound symbolic

approaches to resolve syntactic issues and validate the generated

code (L1), and extract the minimum amount of relevant context for

the prompt to achieve the best possible result (L2 and L3).

1Please note that the keyword symbolic here refers to a general term of symbolic
learning in contrast to machine learning and should not be confused with symbolic
execution. We refer to combining LLMs and program analysis as a neuro-symbolic
approach.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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We propose FlakyDoctor, a neuro-symbolic approach that com-

bines the generalizability power of LLMs with the soundness of

program analysis for repairing OD and ID �aky tests. FlakyDoctor

takes the name and type of �aky test as input (§3.1) and extracts its

test code and body of other tests that partnered in crime. It then

executes them and localizes the source of �akiness. By including

the above information as problem context to generate a prompt

(§3.2), it instructs LLMs to create a patch for repairing �akiness

(§3.3). If the patch has compilation errors, FlakyDoctor �rst tries

to solve the compilation issues o�ine and then forwards the patch

for validation if resolved (§3.4). It terminates with success if the

validation con�rms the generated patch resolves the �akiness. Oth-

erwise, FlakyDoctor updates the prompt with concise information

about unresolved issues and makes subsequent repair attempts

(§3.5). Repairing terminates after a �xed number of iterations or

when all the �aky tests are repaired. Our notable contributions are:

• Technique. To our knowledge, FlakyDoctor is the �rst tech-

nique for repairing more than one category of test �akiness. Prior

work focused on repairing one type of test �akiness, OD �aky

tests [32, 44, 47] or ID �aky tests [59]. Also, none of the prior

techniques has leveraged the power of LLMs in repairing test

�akiness. The power of FlakyDoctor is not directly from the

underlying LLM: o�ine �xing of issues and precise �akiness

localization by minimizing the amount of feedback using static

analysis contributes to 12–31 % of its performance, depending

on the underlying LLM. FlakyDoctor is publicly available [2]

and works with both API- and open-access LLMs.

• EvaluationWe comprehensively evaluated the e�ectiveness of

FlakyDoctor in repairing 873 �aky tests from 243 real-world

projects. Our empirical results corroborate the ability of Flaky-

Doctor in repairing 58% of studied �akiness (57% OD and 59%

ID) in 103 seconds, on average. Among the correct patches, 79

of them were not previously �xed by developers or any existing

automated techniques. We opened PRs for those repaired �aky

tests, and 19 of them were accepted and merged by the time of

submission. Compared to alternative approaches, FlakyDoctor

can repair 8%more ID tests than DexFix, 12%more OD �aky tests

than ODRepair, and 17% more OD �aky tests than iFixFlakies.

2 Background and Motivation

Depending on whether changing the execution order plays a part in

manifesting test �akiness, prior research categorizes �aky tests into

OD and NOD. This section explains these categories with real-world

examples, challenges in repairing di�erent types of �aky tests, and

why FlakyDoctor could repair �akiness in the examples, while

alternative approaches failed.

ODFlakyTests. Such �akiness occurs when two ormore tests in

the test suite are coupled through a shared state that the developers

do not properly manage, e.g., in tearDown or setUp methods [60].

Test prioritization [43] or test parallelization [13] can change the

execution order of the tests, altering their outcome from pass to

fail or vice versa. Tests that change the outcome due to polluted

shared status are called victim or brittle [44]. Victim tests pass when

executed alone (but can fail if executed after some other tests), while

brittle tests fail when run alone (but can pass when run after some

other tests). A test that changes the shared state for the victim test

1 // OD-Polluter

2 @Test

3 public void assertGetEventTraceRdbConfigurationMap() {

4 Properties properties = new Properties();

5 properties.setProperty(BootstrapEnvironment.

EVENT_TRACE_RDB_DRIVER, "org.h2.Driver");

6 properties.setProperty(BootstrapEnvironment.EVENT_TRACE_RDB_URL,

"jdbc:h2:mem:job_event_trace");

7 properties.setProperty(BootstrapEnvironment.

EVENT_TRACE_RDB_USERNAME, "sa");

8 properties.setProperty(BootstrapEnvironment.

EVENT_TRACE_RDB_PASSWORD, "password");

9 ReflectionUtils.setFieldValue(bootstrapEnvironment,"properties",

properties);

10 //...

11 + ReflectionUtils.setFieldValue(bootstrapEnvironment,

12 + "properties", new Properties());

13 }

14 // OD-Cleaner (Does not exist in the original test suite and has

been added for illustration)

15 @Test

16 public void cleaner() {

17 ReflectionUtils.setFieldValue( bootstrapEnvironment, "

properties", new Properties());

18 }

19 // OD-Victim

20 @Test

21 public void assertWithoutEventTraceRdbConfiguration(){

22 assertFalse(bootstrapEnvironment.getTracingConfiguration().

isPresent());

23 }

Figure 1: Example of a previously un�xed OD �akiness in

Elasticjob [9] repaired by FlakyDoctor that cannot be re-

paired by alternative approaches

is called polluter, while the test that changes the shared state for

the brittle is called state-setter. In addition to polluter/victim and

state-setter/brittle tests, cleaners [44] and state-unsetters [18] are

also important concepts related to OD �aky tests. When a cleaner

test runs between a polluter and a victim, it cleans the polluted

state so the victim can pass. Likewise, when a state-unsetter runs

between a state-setter and a brittle, it neutralizes the state change

impact, and the brittle fails.

Figure 1 shows polluter and victim tests from Elasticjob

project [9]. The shared state causing the dependency is the

bootstrapEnvironment, a global variable in the test class. If

the polluter runs before the victim, it will alter the state of

bootstrapEnvironment (Lines 4–9 in polluter code), which causes

the assertion in Line 22 of the victim to fail. Otherwise, the victim

test passes. The cleaner—which does not exist in reality and has

been added for illustration—neutralizes the impact of polluters by

resetting the shared state, resulting in the victim pass.

Repair Challenge. The obvious solution to repair the OD �akiness

is to remove the dependency. In the illustrative example of Figure 1,

the patch should reset the properties of bootstrapEnvironment at

the beginning of victim or the end of the polluter. Without the

privilege of code synthesis ability of LLMs, prior techniques rely

on the existence of cleaners to extract speci�c statements to clean

the pollution and generate patches [44]. To alleviate this need,

subsequent techniques automatically generate the cleaner �rst [32]

and use it for patch generation. Those techniques are still limited

to the ability of testing techniques to generate correct cleaners.
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FlakyDoctor leverages checks the potential shared state/vari-

ables between tests (§3.1) and then instructs LLM tomodify the code

of polluter to clear the polluted state (§3.2). The highlighted line at

the end of the polluter (Line 11) shows the patch for this real-world

example generated by FlakyDoctor. iFixFlakies could not �x this

�akiness due to the absence of cleaners in the test suite. ODRepair

detected the shared state successfully but could not generate the

cleaner test to use it for repair further.

NOD Flaky Test. NOD �akiness happens due to misuse or

misunderstanding of programming APIs, concurrency problems,

execution platforms, runtime environment, etc. Compared to OD

�akiness, NOD �akiness occurs for each test in isolation and regard-

less of test execution order. As a result, one can detect or validate

the patch by re-executing it without shu�ing the test order. Still,

detecting or validating the patch for NOD �akiness is challenging

when the probability of observing �aky behavior is tiny [18]. A spe-

cial sub-category of NOD tests is ID �akiness, which occurs due to

incorrect assumptions about the non-ordered collections [59]. Prior

research [30] has demonstrated that ID tests are more prevalent

than other NOD categories. In the IDoFT [6] dataset of real-world

�aky tests, ID tests also greatly outnumber other NOD tests.

Figure 2 illustrates an ID �aky test from Hadoop [8], which

happens due to converting an unordered collection (a Json object)

into String. This is not problematic unless we assume a speci�c

order for an unordered collection: the assertion (Lines 8–9) checks

if the conversion equals to “{"A":6,"B":2,"C":2}”, assuming that the

string conversions of the same Json objects are similar. As a result,

the execution of this test non-deterministically passes or fails.

Repair Challenge. The �rst step in repairing ID tests is under-

standing the source of non-determinism, i.e., localizing the source

of �akiness. The key idea here is that test execution failure can

help localize the source of �akiness systematically. To extract such

information, FlakyDoctor analyzes the stack trace of the test exe-

cution failure and identi�es the tests and statements within them

that incorporate non-determinism. It then instructs the LLM to

focus on speci�c lines in the culprit tests to repair the issue.

To repair the ID �akiness in Figure 2, the patch generated by

FlakyDoctor �rst transforms the converted JSon object (csv1) into

a LinkedHashMap (Line 10–12), and then reconstructs the expected

output in the previous assertion as a LinkedHashMap (Lines 13–16).

Comparing these two objects in the new assertion (Lines 17–18) re-

solves the �akiness. We suspect the LLM component of FlakyDoc-

tor was able to reason about the return type of mbs.getAttribute

being JSon, based on the format of {"A":6,"B":2,"C":2} in the assertion

argument (Line 9). The chance of data leakage is narrow since this

test was previously un�xed. The alternative approach for �xing ID

tests, DexFix, fails to �x the test as it looks for particular patterns

and explicit usages of unordered collections, which do not exist.

In this paper, we only focus on repairing OD and ID �akiness.

The main reason is that reliable detection of NOD tests in general,

hence validating the generated patches, is still an open problem.

Previous studies [10, 30] rely on re-executing test suites 10–10, 000

times to detect NOD �akiness. Even with this large number of

executions, not observing �aky behavior does not mean it does not

exist. Flakiness localization and patch validation for general NOD

�aky tests still pose open challenges for LLMs to repair them [17].

1 @Test // ID flaky test

2 public void testPriority() throws Exception {

3 //...

4 MBeanServer mbs = ManagementFactory.getPlatformMBeanServer();

5 ObjectName mxbeanName = new ObjectName(

6 "Hadoop:service="+ namespace + ",name=DecayRpcScheduler");

7 String cvs1 = (String)mbs.getAttribute(mxbeanName,"

CallVolumeSummary");

8 - assertTrue("Get expected JMX of CallVolumeSummary before

9 - decay", cvs1.equals("\{"A":6,\"B\":2,\"C\":2\}"));

10 + Map<String, Integer> map1 = new Gson().fromJson(

11 + cvs1, new TypeToken<LinkedHashMap<String, Integer>()

12 + .getType());

13 + Map<String, Integer> expectedMap1 = new LinkedHashMap<>();

14 + expectedMap1.put("A", 6);

15 + expectedMap1.put("B", 2);

16 + expectedMap1.put("C", 2);

17 + assertEquals("Get expected JMX of CallVolumeSummary before

18 + decay", expectedMap1, map1);

19 }

Figure 2: Example of a previously un�xed ID �akiness in

Hadoop [8] repaired by FlakyDoctor that cannot be re-

paired by alternative approaches

3 FlakyDoctor

Figure 3 shows the overview of FlakyDoctor, consisting of four

main components, namely, Inspector , Prompt Generator , Tailor , and

Validator . The Inspector takes a �aky test suite as input, analyzes

the test execution results, and localizes the source of test failures

in the test code. Depending on the type of �akiness, a combination

of inspection results, culprit test method(s), and relevant global

variables and helper methods in the test class will be used by Prompt

Generator to create the prompt. The prompt speci�cally instructs

LLM to focus on particular statements and generate the patch by

modifying the provided tests, variables, and helpers.

Once the LLM responds to the prompt with a patch, Tailor �rst

checks for compilation errors, which are inevitable in the code

produced by LLMs. In case of compilation issues in the patch, the

Tailor tries to resolve them o�ine in Stitching sub-component.

If the modi�ed code passes compilation, it goes to the Validator

to check if it resolves the �akiness. If validated, FlakyDoctor

terminates successfully. Otherwise, the incorrect patch generated

from the current iteration, along with concise compilation or test

execution outputs, goes for another round of inspection and repair.

The iterative repair terminates upon generating a successful patch

or for a �xed number of iterations. We will explain the details of

each component in the remainder of this section.

3.1 Inspector

The Inspector takes the �aky test suite as input and extracts proper

and concise contextual information required to repair the �akiness.

If a given test suite contains more than one �aky test, the Flaky-

Doctor will analyze them individually, and each will be patched

separately. Inspector should generate three contextual information

(CI) for the Prompt Generator : (CI.1) test execution errors, (CI.2) cor-

responding failed assertions, and (CI.3) potential source of �akiness.

To that end, it �rst executes the tests to reproduce the failure based

on di�erent types of �akiness. For OD-Victim tests, Inspector uses
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Flaky Test Suite

Inspector
Prompt 

Generator
Prompt

LLM

   Stitching

Tailor

Offline Stitched PatchValidator

Termination criteria:
1- Identical error observed for 3 times
2- Maximum 5 iterations otherwise

Repaired Test Suite FlakyDoctor

Inspection Results

Compilation error:
'cannot find symbol: class 
LinkedHashMap', 'location: class 
com.ctrip.framework.apollo.biz.ent
ity.JpaMapFieldJsonConverterTest'+ import java.util.LinkedHashMap;

public void 
convertToDatabaseColumn_twoElement_Fix() throws 
IOException {
- Map<String, String> map = new HashMap<>(8);
+ Map<String, String> map = new LinkedHashMap<>(8);
  ...
  assertEquals(expected,  
this.converter.convertToDatabaseColumn(map));
}

Test failure:
“expected: <{"a":"1","disableCheck":"true"}> 
but was: <{"disableCheck":"true","a":"1"}>”

Lines “assertEquals(expected,this.converter.
convertToDatabaseColumn(map));” cause test failure.

Lines “Map<String, String> map = new HashMap<>(8);” 
may cause potential test flakiness.

Response
& 

Inspection

1. Original patch

2. Execution results

public void convertToDatabaseColumn_twoElement() 
throws IOException {
  Map<String, String> map = new HashMap<>(8);
  map.put("a", "1");
  map.put("disableCheck", "true");
  ...
  assertEquals(expected,
this.converter.convertToDatabaseColumn(map));
}

public void 
convertToDatabaseColumn_twoElement_Fix() 
throws IOException {
- Map<String, String> map = new 
HashMap<>(8);
+ Map<String, String> map = new 
LinkedHashMap<>(8);
  ...
  assertEquals(expected,   
this.converter.convertToDatabaseColumn(map));
}

 Adds an import 
statement

Reverts modifier to 
be consistent with 

original code

CI.1
1

2

CI.2

CI.3

Reverts  method 
name to be consistent 

with original code 

Figure 3: Overview of FlakyDoctor for repairing test �akiness

a modi�ed version of Sure�re [1] to specify the execution order of

the polluter and victim, i.e., executes the polluter test before the

victim to make it fail. For OD-Brittle tests, FlakyDoctor executes

them in isolation, as they fail by default. For ID tests, Inspector

executes them with NonDex [4], which randomly explores di�erent

behaviors of certain APIs during test execution through multiple

rounds to produce the failure outcome.

After test execution and reproducing the failure, Inspec-

tor extracts the errors (CI.1) directly from the execution re-

sult. In the running example of Figure 3 that shows an ID

�aky test convertToDatabaseColumn_twoElement, the error mes-

sage (CI.1) is expected:{"a":"1","disableCheck":"true"} but

was:{"disableCheck":"true","a":"1"}). By parsing the stack trace,

Inspector can extract the line number in the test class and get the

assert statement causing the failure accordingly (CI.2).

Repairing without problem localization information is search-

ing for a needle in a haystack. Inspector employs a method-level

localization, i.e., only includes the �aky test methods instead of the

entire test suite. It additionally employs the following heuristics to

localize the source of �akiness at the statement level as possible:

• For ID �aky tests, Inspector performs a backward �ow-sensitive

analysis to pinpoint unordered collections (e.g., HashMap) or APIs

(e.g., getFields) before the failed assertions, which may lead

to a non-deterministic order of elements. In the running exam-

ple, Inspector identi�es that Map<String, String> map = new

HashMap<>(8) initializes an unordered collection and returns it as

the potential cause of �akiness (CI.3).

• For OD-Victim tests, Inspector extracts global variables and helper

methods such as setUp and tearDown. Global variables can be po-

tential sources of dependency between tests. Including the helper

methods is two-fold: they can be either a source of dependency

between tests due to improper management of global variables

and resources, or the patch can implement the �x inside them.

3.2 Prompt Generator

FlakyDoctor currently supports �xing ID and OD (OD-Victim

and OD-Brittle) �aky tests and has three prompt templates corre-

sponding to each type. Figure 4 shows the templates for OD-Victim

(Figure 4a), ID (Figure 4b) and OD-Brittle (Figure 4c) �akiness. The

structure of prompt templates is similar, but Prompt Generator �lls

them di�erently according to �akiness type.

The prompt starts with a natural language instruction, asking

the LLM to repair the �aky test (Instruction section). If the LLM is

instruction-tuned, the prompt asks it to act as a software testing ex-

pert to increase the chance of LLM producing a better response [3].

Depending on the type of �akiness, the instructions provide more

speci�c information and general advice in repairing them.

Next, the prompt introduces the problem that LLM should solve,

i.e., repairing �akiness, by listing the names of the tests involved

(Problem De�nition), followed by relevant source code (Related

Code) extracted by Inspector (CI.2). For ID and OD-Brittle �aky tests,

the Related Code section only includes the �aky test declaration

and implementation. For OD-Victim tests, this section includes the

code of the victim, polluter, global variables, and helper methods.

With this design decision, repairing a polluter or helper methods

may resolve several other related �akiness in the test suite. Prompt

Generator also concatenates statements that raise errors/failures

(CI.1) and potential sources of �akiness (CI.2) to the prompt (Failure

Location section) to help models localize the �akiness better, and,

hopefully, generate a higher-quality patch.

Prompt Generator concludes the prompt with a list of six rules

for LLM to follow: (1) Solve the problem with implicit Chain-of-

Thoughts (CoT) [52], (2) Update the imports and build �les if needed,

(3) Generate syntactically correct code, (4) Ensure all the arguments

are correct, (5) Use compatible types for all variables, and (6) Follow

the speci�ed formatting (to facilitate response processing). As we
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You are a software testing expert. 
I’m going to ask you to fix a flaky test.
[Definition of Order-Dependent Victim Tests] When tests are 
dependent on each other through a shared state, changing the 
execution order results in a non-deterministic pass or failure…
Flakiness can be resolved by removing the dependency between 
tests.

 private DBHelper dbHelper;

 @Before
 public void setUp() {//...}
   
 @After 
public void tearDown() {//...}

testDefaultConfig is the victim flaky test you need to fix, 
testColdFactoryLargerThanOne is the polluter, they are located in 
the following java code:

 When the test fails, I get the following error:
java.lang.AssertionError: expected:<3> but was:<4>
The error is from line(s) assertEquals(SentinelConfig.DEFAULT_COLD_FACTOR, 
SentinelConfig.coldFactor()); in method testDefaultConfig.

Rules

Problem DefinitionInstruction Related Code Failure Location Rules

@Test
 public void testColdFactoryLargerThanOne() {
 //…
SentinelConfig.setConfig(SentinelConfig.COLD_FACTOR, 
"2");
     assertEquals(2, SentinelConfig.coldFactor());
       //…
   }

@Test
 public void testDefaultConfig() {
     //…
   assertEquals(SentinelConfig.DEFAULT_COLD_FACTOR,   
SentinelConfig.coldFactor());
    //…
 }

Victim

PolluterOther hepler methods

You are a software testing expert. 
I’m going to ask you to fix a flaky test.
[Definition of Implementation-Dependent Tests] 
ID flaky tests are caused by using some APIs which 
assume the order of elements are guaranteed…
Flakiness can be resolved by making sure the elements 
returned from collections are in a deterministic order…

convertToDatabaseColumn_twoElement is the flaky test 
you need to fix, which is located in the following 
java code:

When the test fails, I get the following error:
expected: <{"a":"1","disableCheck":"true"}> 
but was: <{"disableCheck":"true","a":"1"}>

The error is from line(s) assertEquals(expected,this.converter.
convertToDatabaseColumn(map));

Line Map<String, String> map = new HashMap<>(8); may cause 
the flakiness.

Rules

@Test
void convertToDatabaseColumn_twoElement() throws IOException {
  Map<String, String> map = new HashMap<>(8);
  map.put("a", "1");
  map.put("disableCheck", "true");
  ...
  assertEquals(expected,
this.converter.convertToDatabaseColumn(map));
}

(a) (b) 

You are a software testing expert. 
I’m going to ask you to fix a flaky test.
[Definition of Order-Dependent Brittle Tests] 
When OD Brittle tests run in isolation, they may fail due 
to improperly configured status…
Flakiness can be fixed by ensuring that states are 
correctly set up (or shut down) at the test's beginning 
(or the end)...

testEmitSingleLongTimeRt is the flaky test you need 
to fix, which is located in the following java code:

When the test fails, I get the following error:
expected:<1000.0> but was:<1047.0>

The error is from line(s) assertEquals(1000, cn.avgRt(), 20);

Rules

@Test
public void testEmitSingleLongTimeRt() {
   String resourceName =  
   createResourceName("testEmitSingleLongTimeRt");
        StepVerifier.create(Mono.just(2)
            .delayElement(Duration.ofMillis(1000))
           .map(e -> e * 2)
     …
    assertEquals(1000, cn.avgRt(), 20);
}

(c) 

Figure 4: Prompt templates for repairing OD-Victim (a), ID (b) and OD-Brittle (c) �aky tests

will show later, including these rules helps only to a limited ex-

tent, which requires additional e�ort to compensate for the subpar

performance of LLMs [38].

3.3 Tailor

Tailor consists of two sub-components: LLM and Stitching. The

LLM carries most of the repair burden. FlakyDoctor can work

with any LLMwith minimal changes in the prompts, and its current

implementation uses GPT-4 [3] as an API-access LLM and Magi-

coder [53] as an open-access LLM2. When dealing with real-world

code and tests, LLMs’ performance can drastically degrade [39].

As an obvious consequence, they generate a code that does not

compile, even though being asked during prompting [38].

The ultimate goal of FlakyDoctor is to repair real-world �aky

tests, making it vulnerable to this limitation of LLMs. Speci�cally,

without being compilable, passing the patch to the Validator com-

ponent is worthless. As a result, Stitching sub-component of Tailor

attempts to resolve common compilation issues in the generated

patch o�ine. As we will show later (§4.4),

Stitching contributes to 10% and 41% of the correct patches gen-

erated by GPT-4 and Magicoder in the �rst iteration (total numbers

across all iterations are 12% and 31%).

These numbers are more signi�cant, by a huge margin, than

asking LLMs to resolve compilation errors through iterative textual

feedback [14, 48]. Stitching also reduces the computational cost and

carbon footprint by avoiding re-promoting LLMs for �xing trivial or

frequent compilation issues. Stitching resolves the following issues

in the LLM-generated patches systematically using Algorithm 1:

2These models have been shown to surpass their equivalent models of the same size
in several programming tasks.

• Inconsistency with the original code (Lines 3–7). Patches likely

di�er from the original code in a few statements. Due to non-

determinism intrinsic to LLMs, it is possible that the generated

code, although implementing the correct repair logic, has such

trivial inconsistency issues and cannot be compiled. To check for

this, Stitching inspects if modi�ers, return types, and annotations

of the test method(s) in the patch match the original code. If not,

it reverts the changes at those places. In the running example of

Figure 3, the LLM-generated patch removes the public modi�er,

which prevents the test runner in JUnit4 from executing the

method. Thereby, Stitching adds the public modi�er back.

• Missing class dependency (Lines 10–17). Adding new code may

require importing new dependencies. If a compilation error is

related to missing dependencies (i.e., missing class symbols error),

Stitching looks for the missing class in the local JDK speci�ed in

the build �le of the project and imports the corresponding one

that resolves the error. In the patch generated for the running

example of Figure 3, LLM replaces HashMap with LinkedHashMap,

but fails to import java.util.LinkedHashMap. Based on the error

message, Stitching looks for the class LinkedHashMap and adds the

corresponding import to the patch. If multiple classes share the

same short name, Stitching initially parses all potential classes

by matching the short name within the JDK and returns a list

that includes all relevant imports. It then traverses the list within

a loop. If the �rst import doesn’t resolve the issue, it proceeds to

the next until the correct class is imported or the loop ends.

• Missing external dependency (Lines 18–20). Some patches require

updating the pom.xml. For example, the patch for ID �akiness

in Figure 2 should not only import com.google.gson.Gson and
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com.google.gson.reflect.TypeToken to the test class, but also up-

date pom.xml by adding gson 2.8.6 as a dependency (or rewrite

the artifactId if the dependency exists).

• Con�icting dependencies (Lines 21–25). LLMs may add dependen-

cies that con�ict with the existing ones. For example, adding

org.assertj.core.api.Assertions.assertThat to a test that al-

ready imports org.junit.Assert.assertThat results in a compi-

lation error due to an ambiguous reference. In such situations,

we maintain the original imports and discard the con�icting

ones from the patch. Additionally, if the original code imports

org.junit.Assert.*, simply matching by short name is insu�-

cient. In this scenario, Stitching traverses each import node in

the patch to determine if its removal resolves the ambiguity,

continuing this process until all con�icts are resolved.

3.4 Validator

FlakyDoctor can generate plausible patches. However, the �nal

decision of whether the patch resolves test �akiness needs further

validation. For OD-Victim tests, Validator executes the patched

polluter and victim in two di�erent orders (polluter before victim

and victim before polluter) using a modi�ed version of Sure�re [1].

If the victim passes in both, FlakyDoctor accepts the patch as

the ultimate repair. Given that a single polluter (P) may pollute

multiple victims ({+0, +1, ... +< }), Validator also checks whether

a patch removes the pollution of other victims ({+1, ... +< }). This

can reduce the need for additional re-prompts to �x each victim

separately, thereby minimizing the costs.

For OD-Brittle, Validator executes the patched brittle test and

accepts it as an ultimate �x if it passes. We did not use iDFlakies to

validate OD tests, mainly due to the non-determinism intrinsic to

the implemented algorithm. One threat of validating tests in isola-

tion from other tests is over�tting [31]: introducing a new problem

when �xing the current one. While the chances of over�tting are

narrow in our experiments, we performed a lightweight static anal-

ysis check to ensure the shared state between OD tests is unique to

them, and no other test in the test suite has such dependency. The

Validator uses NonDex (con�gured with nondexRuns=5 similar to

the original paper) to validate ID patches. If NonDex does not mark

the patch as �aky, we accept it as the ultimate �x.

Validator categorizes the validation outcomes into three groups:

test pass, test failure, and compilation error. A test pass indicates the

patch successfully resolves the issue, while the last two types indi-

cate the patch from the current response does not �x the �akiness

correctly. In such cases, the process will cycle the patch through

subsequent iterations in a feedback loop for further re�nement.

3.5 Feedback Loop

Flaky tests are complex, and LLMs may not repair them with a

single round of prompting, motivating the re-prompting of LLMs

iteratively. At the end of each iteration, the Prompt Generator com-

ponent takes the compilation errors or test failures as inputs, modi-

�es the Related Code and Failure Location of the previous prompt

by adding new contextual information (CI.1–CI.3), and prompts

LLM again. One of the core strengths of FlakyDoctor over re-

lated work that employs iterative textual feedback to improve LLM

Algorithm 1: Stitching Component

Input: Original Related Code '� , LLM-generated Code !� ,

Compilation Errors �

Output: Stitched Code (�

1 foreach<8 ∈ !� do

2 if hasError(<8 ,�) then

3 ) ← getCorrespondingMethod('� ,<8 )

4 �) ←identifyMethodDeclaration() )

5 �" ←identifyMethodDeclaration(<8 )

6 if �) ≠ �" then

7 (� ← revert �" in<8 to �)

8 (!81 ← 64C �0E0(C0=30A3!81B

9 foreach 48 ∈ � do

10 if isMissingClassSymbol(48 ) then

11 4(~<1>; ← extractClassSymbol(48 )

12 (;818 ← searchJavaLib(4(~<1>;, (!81)

13 foreach ;81A ∈ (;818 do

14 %A ← addImportLib(;81A , (�)

15 �A ← compile(%A )

16 if 48 ∉ �A then

17 (� ← %A

18 if packageNotExist(48 ) then

19 ?02: ← extractMissingPackage(48 )

20 (�1D8;3 ← searchRepository(?02:)

21 %�<?>ACB ← getImportStats(<8 )

22 ) �<?>ACB ← getImportStats() )

23 foreach %�<?8 ∈ %�<?>ACB do

24 if isCon�ictWith(%�<?8 ,) �<?>ACB) then

25 (� ← exclude((�, %�<?8 )

26 return (�

performance [14, 39, 48] is trimming down long compilation er-

ror or test failure results (sometimes as long as 1000+ lines) to a

handful of concise contextual information (§3.1). This will improve

the performance of FlakyDoctor, as recent research shows that

LLMs provide the best results when given fewer, more relevant con-

texts rather than larger, un�ltered ones [35]. The iterative repair

of a given �aky test repeats �ve times. However, FlakyDoctor

terminates the feedback loop sooner if it observes an identical com-

pilation error in three consecutive rounds or repairs �akiness.

In-context learning [12] may improve the performance of Flaky-

Doctor. However, including examples results in prompts exceeding

the LLMs’ context window size in many cases, especially those for

repairing OD-Victim tests. Furthermore, FlakyDoctor’s prompts

are enriched with practical natural language instructions and con-

cise context in the Related Code and Failure Location sections.

Given that LLMs inherently understand instructions in natural lan-

guage better than in-context examples in di�erent modalities [49],

the need for in-context examples in FlakyDoctor is negligible.
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4 Evaluation

We investigate the following research questions:

RQ1: E�ectiveness in �xing Test Flakiness. To what extent

FlakyDoctor can repair previous �xed or un�xed OD and

ID �akiness in real-world projects?

RQ2: Comparison with Alternative Approaches. To what ex-

tent FlakyDoctor can �x �aky tests that alternative ap-

proaches cannot? Are there �aky tests that FlakyDoctor

cannot �x but other techniques can?

RQ3: Contribution of Di�erent Components. To what extent

do error extraction, prompt crafting, stitching, and feedback

loop help FlakyDoctor to successfully repair �aky tests?

RQ4: Performance. How much does it take and cost for Flaky-

Doctor to repair �aky tests?

4.1 Experimental Setup

Alternative Approaches. Prior research focuses on repairing only

one type of test �akiness; ODRepair [32] and iFixFlakies [44] repair

Java OD tests and iPFlakies [47] repairs Python OD tests. Dex-

Fix [59] repairs ID tests. TRaF [40] repairs a special category of

NOD tests caused by asynchronous waits. We excluded TRaF from

alternative approaches, as FlakyDoctor currently only �xes ID

and OD tests. Since most �akiness repair approaches deal with

Java unit tests, we excluded iPFlakies from the evaluation. Among

the remaining tools, DexFix is not publicly available3, but their

dataset is. As a result, we evaluated FlakyDoctor on their dataset

of ID tests without running their tool on additional ID �akiness.

For OD �akiness, we compared with both ODRepair and iFixFlakies

(ODRepair overcomes the limitations of iFixFlakies by generating

cleaner tests, while iFixFlakies can �x tests that ODRepair can not).

Subjects.Alternative approaches comewith a dataset of ID (from

DexFix) and OD-Victim �aky tests (from ODRepair). We excluded

38 tests from four projects in DexFix dataset and 28 OD-Victim tests

from eight projects in ODRepair dataset that we were not able to

compile or reproduce the �akiness in a reasonable amount of time,

which left us with 237 ID tests and 299 OD-Victim tests.

We further augmented these datasets with �aky tests from IDoFT,

a repository of di�erent types of �akiness in real-world projects.

The reasons for augmentation are to include (1) OD-Brittle tests,

which were not included in the dataset of prior work, and (2) �aky

tests that were not previously �xed by human developers or auto-

mated �akiness repair techniques. From IDoFT, we excluded the

projects that (1) were removed from the repositories mentioned in

IDoFT, (2) we were not able to compile with Java 8 or Java 11 due to

non-trivial issues such as deprecated dependencies, (3) did not �n-

ish compilation in one hour, and (4) we were not able to reproduce

their �akiness. The �ltering process left us with 193 projects with

at least one module, where di�erent modules of the same project

may have di�erent �aky tests in the IDoFT dataset. Augmentation,

along with the tests from the dataset of alternative approaches,

provides us with 541 ID, 299 OD-Victim4, and 33 OD-Brittle tests

from total 243 projects. Among the total of 873 tests, there are 114,

98, and 14, previously un�xed ID, OD-Victim, and OD-Brittle tests.

3This was con�rmed by the paper’s authors.
4No additional OD-Victim tests found in the selected projects.

LLMs. FlakyDoctor is designed to work with API- and open-

access LLMs. The former does not require the availability of GPU

resources and is more accessible to a wider range of users. How-

ever, most API-access models, even though negligible, charge for

prompting. Open-access LLMs, on the other hand, are free to use,

assuming the availability of (non-trivial) GPU resources. Our exper-

iments use GPT-4 [3] and Magicoder [53] as API- and open-access

LLMs, given their superiority to alternative models of similar size

in code synthesis [3, 53]. LLMs are inherently non-deterministic,

which impacts the reproducibility of their results. We believe this

is not a threat to the validity of our results: once the synthesized

code repairs the �akiness, the problem is considered to be solved.

Furthermore, the iterative nature of FlakyDoctor, utilizing sound

program analysis as part of the approach, large-scale evaluation on

real-world data (repairing 5075 out of 873 �aky tests), and repairing

previously un�xed �aky tests (79 previously un�xed by developers

or alternative approaches) increases con�dence in the rigor of the

technique rather than being luck.

4.2 RQ1: E�ectiveness in Repairing Test
Flakiness

4.2.1 Repairing ID Flakiness. Table 1 shows the result of running

FlakyDoctor and DexFix on subject ID �aky tests. Columns PF

and PU indicate the number of previously �xed and un�xed ID

tests. After the automated validation, we manually checked all the

repaired patches to ensure the correctness. Such false positives

(listed under column FP) include deleting assert statements in the

patch, surrounding them inside try/catch blocks, or replacing the

failing assert statement with one that always passes. The reported

numbers under PF and PU do not include FP patches.

From these results, we can see that FlakyDoctor-GPT-4 and

FlakyDoctor-Magicoder were able to repair 57% (39% previously

un�xed) and 16% (9% previously un�xed) ID �aky tests. While

Magicoder repairs less tests compared to GPT-4, it can, in fact, repair

6 tests that GPT-4 cannot. As we will show in RQ3, augmenting

the power of LLMs with program analysis enables some emerging

abilities for smaller open-access models.

We also wanted to see to what extent FlakyDoctor advances

state-of-the-art ID �akiness repair technique, DexFix. Given that

DexFix is not publicly available, to have a fair comparison, we show

the performance of FlakyDoctor for a subset of ID �aky tests

in the last four projects that overlap with DexFix dataset inside

the parenthesis. Overall, FlakyDoctor-GPT-4 and FlakyDoctor-

Magicoder repair 52% and 11% of the ID �aky tests in the DexFix

Dataset, while DexFix achieves 44% repair success rate. The repaired

ID tests by FlakyDoctor-GPT-4 from the DexFix dataset subsume

that of FlakyDoctor-Magicoder.

4.2.2 Repairing OD Flakiness. The numbers under OD-Victim col-

umn of Table 2 compare the e�ectiveness of FlakyDoctor with

ODRepair and iFixFlakies. OD-Brittle column only compares Flaky-

Doctor and iFixFlakies, as ODRepair cannot �x such �akiness

without knowing corresponding state-unsetters (a test that pollutes

the state for brittle tests) [18].

5We count unique tests repaired by two versions of FlakyDoctor.
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Table 1: E�ectiveness of FlakyDoctor and DexFix in re-

pairing ID �akiness. P: Projects; M: Modules; PF: Previously

Fixed; PU: Previously Un�xed; FP: False Positive. Green

rows indicate the superiority of FlakyDoctor, and the red

row indicates the superiority of DexFix. The white rows be-

long to augmented tests.

GitHub ID #P [#M]
#Tests GPT-4 Magicoder DexFix
PF PU PF PU FP PF PU FP #Fixed

FasterXML 10 [9] 12 2 9 2 1 1 0 1 -
SAP 4 [2] 4 1 2 0 0 1 0 0 -
IBM 4 [4] 4 0 3 0 0 0 0 0 -
adobe 3 [2] 3 1 2 0 0 1 0 0 -

DataDog 3 [1] 2 1 2 1 0 0 0 1 -
oracle 3 [3] 3 0 1 0 0 1 0 0 -
wild�y 2 [5] 3 2 1 0 0 1 0 1 -
intel 2 [1] 1 1 1 0 0 1 0 0 -

networknt 2 [5] 5 0 3 0 0 2 0 0 -
gchq 2 [5] 4 2 4 0 1 1 0 0 -

opengoofy 2 [3] 4 0 4 0 1 2 0 0 -
eclipse-ee4j 2 [6] 1 5 0 3 0 0 1 0 -

SP 6 2 [2] 2 0 2 0 0 0 0 0 -
HubSpot 2 [2] 2 0 2 0 0 1 0 0 -
twitter 2 [2] 2 0 1 0 0 0 0 0 -
dromara 2 [3] 3 0 2 0 0 0 0 0 -
GCP 7 2 [1] 1 1 1 0 0 1 0 0 -
eBay 2 [2] 1 1 0 1 0 0 0 0 -
jdereg 2 [1] 0 2 0 0 0 0 0 1 -
apache 36 [87] 136 (98) 46 75 (49) 16 0 17 (5) 0 9 29
square 4 [4] 3 (9) 9 2 (1) 2 0 0 (0) 0 0 0
AC 8 2 [5] 9 (4) 0 7 (2) 0 0 4 (1) 0 0 0
intuit 2 [2] 1 (2) 2 1 (1) 1 0 0 (0) 0 0 0
Others 114 [143] 182 (91) 37 117 (51) 17 3 40 (18) 9 5 50
alibaba 4 [6] 39 (33) 1 25 (20) 1 0 3 (2) 0 0 25
Total 215 [306] 427 (237) 114 267 (124) 44 6 77 (26) 10 18 104

Similar to the previous experiment, we manually checked and

excluded false positives from the results. FlakyDoctor-GPT-4 can

repair 58% (27% previously un�xed) OD-Victim tests. FlakyDoc-

tor-Magicoder repairs 27%, all subsumed by FlakyDoctor-GPT-4.

On the other hand, ODRepair and iFixFlakies repair 45% and 40%

of OD-Victim tests. To recall, we have to exclude 28 tests from

ODRepair and 38 tests from DexFix dataset due to non-trivial dep-

recated dependencies or non-reproducible �akiness, out of which,

ODRepair successfully repairs only �ve, and DexFix successfully

repairs 15. This still makes FlakyDoctor superior to ODRepair

and DexFix, given the notable gap in repairing OD-Victim and ID

tests. Fixing OD-Brittle is a tie-in competition for FlakyDoctor-

GPT-4 and iFixFlakies, FlakyDoctor achieves 51% success rate and

iFixFlakies achieves 39%. FlakyDoctor-Magicoder can only repair

9% of the OD-Brittle �aky tests, where one of them could not be

�xed by FlakyDoctor-GPT-4.

As demonstrated, FlakyDoctorwas able to repair 79previ-

ously un�xed ID and OD �aky tests. We have opened PRs for

such �xes, where 19 of them have been accepted and merged

by the time of submission 9.We consider this ability of Flaky-

Doctor to make it superior to �akiness repair approaches in

particular, and to a wider range of LLM-based program repair

techniques, in general. Comparing FlakyDoctor with gen-

eral State-of-the-art APR techniques [55, 57], even those that

6spring-projects
7GoogleCloudPlatform
8apollocon�g
9The links to the opened PRs are available on the artifact website [2].

Figure 5: Comparison between the correct patches generated

by di�erent approaches. Sub-�gures a-b compare OD-Victim,

c-d compare OD-Brittle, and e-f compare ID patches

leverage LLMs such as GPT-4 [56], have been only proven to

be e�ective on known datasets such as Defects4J [5] and

QuixBugs [7]. Most of these techniques [22, 23, 56] also

assume perfect bug localization before the repair. In con-

trast, FlakyDoctor repairsmany �aky tests from real-world

projects, where humans or automated techniques previously

could not repair a reasonable number. As we will show in

subsequent research questions, this power comes from the

synergy of LLMs and symbolic approaches, not just LLMs.

4.3 RQ2: Comparison with Alternative
Approaches

We further wanted to explore the properties of �aky tests repaired

by di�erent approaches. To that end, we illustrate the overlap of

successful patches generated by FlakyDoctor and those from alter-

native approaches in Figure 5. For OD-Victim tests (Figures 5a-5b),

FlakyDoctor-GPT-4 exclusively repairs 68 OD-Victim tests, in-

cluding 26 that were previously un�xed. FlakyDoctor-Magicoder

can �x 37 tests that neither ODRepair nor iFixFlakies could �x.

Alternative OD repair approaches fail at repairing such cases due

to the need for existing cleaners (iFixFlakies) or di�culties in iden-

tifying complex shared statuses beyond static variables (ODRepair).

For OD-Brittle tests (Figures 5c-5d), FlakyDoctor-GPT-4 exclu-

sively repairs 11 of them (nine previously un�xed). FlakyDoctor-

Magicoder can repair only three OD-Brittles, all �xed by iFixFlakies.

Regarding ID tests (Figures 5e-5f), FlakyDoctor-GPT-4 success-

fully repairs 50 ID �aky tests that DexFix cannot, and FlakyDoc-

tor-Magicoder manages to repair four tests that are beyond the
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Table 2: E�ectiveness of FlakyDoctor, ODRepair and iFixFlakies in repairing OD �akiness. P: Github Projects; M: Modules;

PF: Previously Fixed ID tests; PU: Previously Un�xed ID tests; FP: False Positive. Green rows indicate the superiority of

FlakyDoctor, yellow rows indicate tie, red rows indicate the superiority of alternative approaches, and the white row

indicates cases where none of the techniques repaired �aky tests.

GitHub ID #P [#M]
OD-Victim OD-Brittle

#Tests GPT-4 Magicoder
ODRepair iFixFlakies

#Tests GPT-4 Magicoder
iFixFlakies

PF PU PF PU FP PF PU FP PF PU PF PU FP PF PU FP

winder 1 [2] 5 1 5 1 0 0 0 0 5 5 - - - - - - - - -
tbsalling 1 [1] 2 0 2 0 0 0 0 0 0 0 - - - - - - - - -
tools4j 1 [1] 1 0 1 0 0 0 0 0 0 0 - - - - - - - - -

yangfuhai 1 [1] 0 6 0 6 0 0 0 0 0 0 - - - - - - - - -
jnr 1 [1] 0 4 0 3 0 0 0 0 0 0 - - - - - - - - -

Activiti 1 [1] 0 11 0 9 0 0 0 0 0 0 0 8 0 7 0 0 0 0 0
wild�y 1 [1] 37 0 37 0 0 37 0 0 0 0 1 0 0 0 1 0 0 0 1
vmware 1 [1] 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
wikidata 1 [1] 2 0 2 0 0 0 0 0 0 2 3 0 3 0 0 2 0 0 3
alibaba 2 [2] 4 0 3 0 1 1 0 0 1 1 1 1 0 1 1 1 0 1 2
apache 8 [21] 45 41 6 7 2 0 0 0 33 10 5 1 2 0 0 0 0 0 1
fhoeben 1 [1] - - - - - - - - - - 1 0 1 0 0 0 0 1 1
OpenHFT 1 [1] - - - - - - - - - - 2 0 2 0 0 0 0 0 2

undertow-io 1 [1] 1 0 1 0 0 0 0 0 1 1 - - - - - - - - -
kevinsawicki 1 [1] 28 0 28 0 0 0 0 0 28 28 - - - - - - - - -
Thomas-S-B 1 [1] 46 0 46 0 0 40 0 0 46 46 - - - - - - - - -
ktuukkan 1 [1] 12 0 12 0 0 0 0 0 12 12 - - - - - - - - -
google 1 [1] 1 0 1 0 0 0 0 0 1 0 - - - - - - - - -

spring-projects 2 [3] 2 11 2 0 0 2 0 1 0 2 0 1 0 0 0 0 0 0 0
ConsenSys 1 [2] 3 3 0 0 0 0 0 0 0 3 - - - - - - - - -

ctco 1 [1] 1 0 0 0 0 0 0 0 0 1 - - - - - - - - -
dropwizard 1 [1] 1 0 0 0 0 0 0 0 0 1 - - - - - - - - -
networknt 1 [6] 9 5 0 0 0 0 0 0 9 9 - - - - - - - - -

hexagonframework 1 [1] - - - - - - - - - - 1 0 0 0 0 0 0 0 1
pinterest 1 [1] - - - - - - - - - - 2 0 0 0 0 0 0 0 2
Others 10 9 [9] 0 16 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0

Total 43 [64] 201 98 146 26 3 80 0 1 136 121 19 14 8 9 2 3 0 2 13

capability of DexFix, which is limited to speci�c heuristics and fails

to generalize beyond them. Figure 1 and Figure 2 show examples

of cases where FlakyDoctor was able to repair �aky tests, but

alternative OD and ID repair approaches could not.

4.3.1 OD tests that FlakyDoctor cannot repair. Through manual

investigation of cases where FlakyDoctor could not �x but alter-

native approaches did, we identi�ed two main recurring patterns:

(1) Even though our program analysis provided the polluted vari-

able(s) as context, the patches focused on resetting other variables.

In most cases, these variables were directly used in the assertion

of the victim method but were not the polluted states. (2) Even if

LLM identi�ed polluted states correctly, FlakyDoctor could not

generate a correct patch due to hallucination. Examples of such

hallucinations include adding variables that do not exist or applying

APIs incompatible with the polluted �eld type.

4.3.2 ID tests that FlakyDoctor cannot repair. There are 30 tests

�xed by DexFix but not FlakyDoctor. Breaking down these tests:

(1) FlakyDoctor successfully located the unordered collections

but could not generate a correct patch due to over�tting into the

provided context. For example, if the assertion failure in the context

is related to speci�c elements in the HashMap, while LLM creates a

LinkedHashMap (which is an ordered collection), it only populates it

with those speci�c elements and discards others. This may result

in resolving the previous assertion failure but failing new ones. (2)

FlakyDoctor successfully located the unordered collections and

sorted the elements in a deterministic order. However, it consis-

tently faced compilation errors due to hallucinating unsupported

operators or invoking non-existent APIs.

These results con�rm that the FlakyDoctor can complement

existing tools for repairing �aky tests, serving as a complementary

technique along with others. For tests where symbolic techniques

DexFix, iFixFlakies, and ODRepair fail to generate a patch based

on existing heuristics, developers may use FlakyDoctor.

4.4 RQ3: Contribution of Di�erent Components

In this research question, we evaluate the e�ectiveness of three no-

table contributions of FlakyDoctor: e�ective �akiness localization,

prompt crafting, and iterative repair.

4.4.1 Flakiness Localization. Without analyzing the test report by

the Inspector , FlakyDoctor should take the entire test execution re-

port of compilation error stack trace. To show the impact of precise

�akiness localization, we sorted all �aky tests based on the length

10The GitHub ID of nine projects are: vaadin, dan�ckle, jenkinsci, c2mon, CloudSlang,
jitsi, �axsearch, javadelight, querydsl.
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Table 3: Impact of precise �akiness localization on the ef-

fectiveness of FlakyDoctor. Avg. Lines: Average length of

entire test reports; Patches and O-Patches indicate correct

patches with longer prompts and original FlakyDoctor.

Flakiness #Tests Avg. Lines Model #Patches #O-Patches

ID 216 606
GPT-4 2 111

Magicoder 0 28

OD-Victim 120 164
GPT-4 52 106

Magicoder 42 77

OD-Brittle 13 489
GPT-4 0 12

Magicoder 0 3

of the original test failure report, selected the top 40% (the budget

caps the percentage) (349 tests), and replaced the Failure Location

part of the prompt with the entire test report. Table 3 compares

the e�ectiveness of the FlakyDoctor with (O-Patches column)

or without (Patches column) precise �akiness localization by the

Inspector . These results demonstrate the necessity of minimizing

contextual information for LLMs to achieve a higher performance:

Without trimming, 435 prompts (aggregated for both models) ex-

ceed the context window of the models. FlakyDoctor LLMs that

originally could repair all selected �aky tests only repair 96 of them.

4.4.2 Prompt Cra�ing. To show the impact of the proposed prompt

crafting approach of FlakyDoctor, we asked FlakyDoctor-GPT-4

and FlakyDoctor-Magicoder to repair all subject ID and OD �aky

tests through vanilla prompting: to perform a taskwithout providing

additional context. Table 4 shows the result of this experiment. In

this experimental setting, FlakyDoctor-GPT-4 and FlakyDoctor-

Magicoder only produced 13 and two correct patches, compared

to 500 and 170 original patches. Vanilla prompting results in zero

patches for OD-Brittle �aky tests. In most of the failed cases, LLM

either explicitly mentioned that it does not understand the problem

or only explained the test code without producing any patch. The

huge performance drop (98%) in vanilla prompting indicates

the impact of providing the proper context into the prompt.

4.4.3 Stitching and Iterative Feedback. To investigate the impact

of iterative feedback and Stitching, we tracked back the lifetime

of patched �aky tests during multiple repair iterations. Overall,

for 500 �aky tests �xed by FlakyDoctor-GPT-4 and 170 by

FlakyDoctor-Magicoder, Stitching contributes to 12% and

31% of them, respectively.

Figures 6a-b illustrates the evolution of 170 and 500 patches from

FlakyDoctor-Magicoder and FlakyDoctor-GPT-4. The left grey

bar shows the initial state of tests, i.e., being �aky. After applying

the patch in each iteration, the status can be Test Pass (P) (�akiness

�xed), Test Failure (F) (�akiness still exists), or Compilation Error

(CE) (patching resulted in compilation issue). We are speci�cally

interested in patches that Stitching contributes to changing their

status and labeled them with [iteration number]:[status1] To

[status2]. For example, “2:CE To P” shows Stitching changes the

state of patches in iteration 2 from compilation error to test pass.

Among the 170 tests successfully repaired by FlakyDoctor-

Magicoder, Stitching converts compilation errors to test pass for 32

of them (CE To P). For eight tests, while Stitching addressed the

Table 4: The results of vanilla prompting compared to Flaky-

Doctor. Patches: Total generated patches; C-Patches: Correct

patches; FP-Patches: False Positives.

Flakiness #Tests Model #Patches #C-Patches #FP-Patches

ID 541
GPT-4 336 11 12

Magicoder 255 1 10

OD-Victim 299
GPT-4 251 2 2

Magicoder 173 1 2

OD-Brittle 33
GPT-4 13 0 1

Magicoder 11 0 0

compilation errors, the patches resulted in test failures (CE To F).

Additionally, for 12, Stitching resolved partial but not all compilation

issues (CE To CE), which also helps to generate improved patches

in the subsequent iteration. For 500 correct patches generated by

FlakyDoctor-GPT-4, Stitching helped 58 during the repair process.

Among these patches, 37 were improved by Stitching directly into

successful patches. The impact of Stitching is much higher on Magi-

coder since it is a smaller and weaker model compared to GPT-4.

This entails the importance of neuro-symbolic approaches for the

ultimate democratization of open-source LLMs.

24% to 60% of patches, including those �xed by Stitching, were

generated in the �rst iteration. The feedback loop contributed to

generating the remaining patches in subsequent iterations: feed-

back loop contributes to more than doubling the number of

patches generated in the �rst iteration.

4.5 RQ4: Performance

To address this research question, we evaluated the time and costs

involved in using FlakyDoctor during repairing tests. The iterative

work�ow of FlakyDoctor attempts the repair between one to �ve

times. Tests for which a successful patch is generated may �nish

earlier, whereas those that cannot be repaired persist longer. On

average, GPT-4 requires 87.2 seconds and costs $0.12 to repair an ID

test or OD-Brittle test, and takes 232.8 seconds at a cost of $0.27 to

complete a repair attempt for unsuccessful tests. For OD tests, GPT-

4 needs 107.5 seconds at a cost of $0.18 to repair a test successfully,

and 214.2 seconds costing $0.35 for unsuccessful repair attempts.

Magicoder, on the other hand, takes 109.2 seconds to successfully

repair an ID test and 355.9 seconds for an unsuccessful attempt; for

OD tests, it requires 110.6 seconds for a successful repair and 247.7

seconds for an unsuccessful attempt.

5 Related Work

Many techniques have been proposed for characterising [19, 26,

27, 29, 30], detecting [11, 24, 28, 36, 41, 42, 46, 47, 51, 58, 61], or

repairing [15, 20, 32, 40, 44, 47, 50] test �akiness. Recently, Chen

et al. proposed Croissant [18], a tool for modifying tests such that

a non-�aky test suite shows �aky behavior. iFixFlakies [44] and

iPFlakies [47] are two related research on repairing test �akiness

exist in Java and Python tests suites. iFixFlakies takes the order-

dependent test, the failing test order, and the passing test order. The

current implementation of iFixFlakies leverages iDFlakies to get the

required inputs. It then modi�es the execution order of di�erent

sub-sequences of tests to �nd tests that modify the shared state—by
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(a)

(b)

Iter1 Iter2 Iter3 Iter4 Iter5start

0:F
170

0:F
500

CE: Compilation Error

P: Test Pass
F: Test Failure

CE To P: Stitching transforms CE to P 

CE To CE: Stitching transforms CE to CE 
CE To F: Stitching transforms CE to F 

Figure 6: The evolution of patches through di�erent repair

iterations of (a) FlakyDoctor-Magicoder and (b) FlakyDoc-

tor-GPT-4. The notation To indicates the applicability and

impact of the Stitching to the current patch

setting or unsetting the shared states—with the identi�ed victim

or brittle, and uses them to generate the patch. iPFlakies follows

similar steps but can only repair victim OD tests (not brittles) in

Python test suites. Compared to these approaches, FlakyDoctor

is more versatile in repairing both victim and brittle OD tests as

well as ID �aky tests.

ODRepair [32] is proposed to overcome the limitation of

iFixFlakies, which rely on the existence of cleaner tests to repair

victim OD tests. To that end, it analyzes the static �elds and se-

rialized heap state to identify the polluted shared states between

victim and polluter tests and relies on automated testing techniques

to generate cleaners tests. By enforcing the execution of cleaner

tests before the victim, ODRepair resolves the test �akiness. Com-

pared to this technique, which only targets repairing victim OD

tests, FlakyDoctor can repair more categories of test �akiness.

Also, our proposed technique completely resolves the dependency,

making the patch more realistic to resolve test �akiness.

DexFix [59] repairs ID �akiness by implementing domain-

speci�c repair strategies that resolve implementation dependencies

in both the test and the main codes. Consequently, it is limited to

strategies tailored to repair studied �aky tests and may not gen-

eralize to other patterns. FlakyDoctor is not limited in that way

due to relying on LLMs to perceive the nature of test �akiness and

repairing based on the relevant contexts provided in the prompt.

TRaF [40] aims to address test �akiness in the JavaScript test

suite of web-based applications by updating the waiting time of

asynchronous calls to a value that breaks the time dependency

between tests. To that end, they use code similarity and look at the

relevant change history of the code, hoping to �nd useful hints for

the e�cient wait time in the existing or past code versions. Asyn-

chronous waits are a subcategory of NOD test �akiness [18], which

the current implementation of FlakyDoctor does not support.

Existing research [17] indicates that merely leveraging LLMs can

be challenging for repairing NOD �aky tests.

FlakyDoctor is the �rst test �akiness repair technique that

leverages the power from a combination of LLMs and static anal-

ysis. The empirical evaluation clearly shows the bene�t of this

combination, i.e., repairing di�erent categories of test �akiness

and generating successful patches for �aky tests that were not

previously �xed by humans or existing automated techniques.

6 Concluding Remarks

In this paper, we proposed FlakyDoctor, the �rst technique that

combines the generalizability power of LLMs with the soundness of

the program analysis, to repair di�erent types of �akiness. Our eval-

uation results show that FlakyDoctor is able to generate patches

for �aky tests of real-world projects that were previously un�xed.

In many cases, neither prior automated techniques nor human

developers were able to repair such �akiness.

We are considering several research directions on top of this

work. The �rst obvious plan is supporting the repair of NOD �aky

tests. This requires devising more complex analysis techniques to

localize such �akiness issues and revising the prompt template to

incorporate relevant context. Next, we plan to perform a large-

scale empirical study to further pinpoint when FlakyDoctor can

repair test �akiness, and when it cannot. This would provide insight

into the research gap, very likely to require more advanced o�ine

processing techniques to further help LLMs repair �aky tests.

7 Data Availability Statement

The artifacts of FlakyDoctor are publicly available at [2] and [16].
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